Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8824, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627563

RESUMO

Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.


Assuntos
Secas , Superóxido Dismutase , Prolina , China , Folhas de Planta/química , Fotossíntese/fisiologia , Plântula/fisiologia , Árvores , Água/análise
2.
Sci Data ; 11(1): 332, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575621

RESUMO

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, introduces more than 800 new sampling sites, and comprises LFMC values obtained from samples collected until the calendar year 2023. Each entry within the dataset provides essential information, including date, geographical coordinates, plant species, functional type, and, where available, topographical details. Moreover, the dataset encompasses insights into the sampling and weighing procedures, as well as information about land cover type and meteorological conditions at the time and location of each sampling event. Globe-LFMC 2.0 can facilitate advanced LFMC research, supporting studies on wildfire behaviour, physiological traits, ecological dynamics, and land surface modelling, whether remote sensing-based or otherwise. This dataset represents a valuable resource for researchers exploring the diverse LFMC aspects, contributing to the broader field of environmental and ecological research.

3.
Plant Cell ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271284

RESUMO

Photoperiod is a crucial environmental cue for phenological responses, including growth cessation and winter dormancy in perennial woody plants. Two regulatory modules within the photoperiod pathway explain bud dormancy induction in poplar (Populus spp.): the circadian oscillator LATE ELONGATED HYPOCOTYL 2 (LHY2) and GIGANTEA-like genes (GIs) both regulate the key target for winter dormancy induction FLOWERING LOCUS T2 (FT2). However, modification of LHY2 and GIs cannot completely prevent growth cessation and bud set under short-day conditions, indicating that additional regulatory modules are likely involved. We identified PtoHY5a, an orthologs of the photomorphogenesis regulatory factor ELONGATED HYPOCOTYL 5 (HY5) in poplar (Populus tomentosa), that directly activates PtoFT2 expression and represses the circadian oscillation of LHY2, indirectly activating PtoFT2 expression. Thus, PtoHY5a suppresses short day-induced growth cessation and bud set. Accordingly, PtoHY5a knockout facilitates dormancy induction. PtoHY5a also inhibits bud-break in poplar by controlling gibberellic acid (GA) levels in apical buds. Additionally, PtoHY5a regulates the photoperiodic control of seasonal growth downstream of phytochrome PHYB2. Thus, PtoHY5a modulates seasonal growth in poplar by regulating the PtoPHYB2-PtoHY5a-PtoFT2 module to determine the onset of winter dormancy, and by fine-tuning GA levels to control bud-break.

4.
Plant Cell Environ ; 47(2): 408-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927244

RESUMO

Establishing the temperature dependence of respiration is critical for accurate predictions of the global carbon cycle under climate change. Diurnal temperature fluctuations, or changes in substrate availability, lead to variations in leaf respiration. Additionally, recent studies hint that the thermal sensitivity of respiration could be time-dependent. However, the role for endogenous processes, independent from substrate availability, as drivers of temporal changes in the sensitivity of respiration to temperature across phylogenies has not yet been addressed. Here, we examined the diurnal variation in the response of respiration to temperatures (R-T relationship) for different lycophyte, fern, gymnosperm and angiosperm species. We tested whether time-dependent changes in the R-T relationship would impact leaf level respiration modelling. We hypothesized that interactions between endogenous processes, like the circadian clock, and leaf respiration would be independent from changes in substrate availability. Overall, we observed a time-dependent sensitivity in the R-T relationship across phylogenies, independent of temperature, that affected modelling parameters. These results are compatible with circadian gating of respiration, but further studies should analyse the possible involvement of the clock. Our results indicate time-dependent regulation of respiration might be widespread across phylogenies, and that endogenous regulation of respiration is likely affecting leaf-level respiration fluxes.


Assuntos
Aclimatação , Respiração Celular , Respiração Celular/fisiologia , Aclimatação/fisiologia , Plantas , Temperatura , Respiração , Folhas de Planta/fisiologia
5.
Sci Adv ; 9(44): eadh1738, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922351

RESUMO

During summer, plants often experience increased light inputs and high temperatures, two major environmental factors with contrasting effects on thermomorphological traits. The integration of light and temperature signaling to control thermomorphogenesis in plants is critical for their acclimation in such conditions, but the underlying mechanisms remain largely unclear. We found that heat shock transcription factor 1d (HSFA1d) and its homologs are necessary for plant thermomorphogenesis during the day. In response to warm daytime temperature, HSFA1s markedly accumulate and move into the nucleus where they interact with phytochrome-interacting factor 4 (PIF4) and stabilize PIF4 by interfering with phytochrome B-PIF4 interaction. Moreover, we found that the HSFA1d nuclear localization under warm daytime temperature is mediated by constitutive photomorphogenic 1-repressed GSK3-like kinase BIN2. These results support a regulatory mechanism for thermomorphogenesis in the daytime mediated by the HSFA1s-PIF4 module and uncover HSFA1s as critical regulators integrating light and temperature signaling for a better acclimation of plants to the summer high temperature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quinase 3 da Glicogênio Sintase , Temperatura , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases
7.
Plant Cell Environ ; 46(9): 2763-2777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306365

RESUMO

Adaptation to future climates characterized by more frequent severe droughts requires enhanced mechanistic understanding of tree mortality. However, our knowledge of the physiological limits to withstand extreme drought, and how the coordination between water and carbon traits enhances survival, is still limited. Potted seedlings of Pinus massoniana were dehydrated to three target droughts (percentage loss of stem hydraulic conductivity of ca. 50%, 85%, and 100%; PLC50 , PLC85 and PLC100 ) and then relieved from these target droughts by fully rewatering. Predawn and midday water potentials (Ψ), relative water content (RWC), PLC and nonstructural carbohydrates (NSC) were monitored. During drought, Ψ and RWC declined as PLC increased. Root RWC declined more rapidly than other organ RWCs, particularly after PLC50 stress. All organ NSC concentrations were above predrought values. During rewatering, water trait recovery declined as drought increased, with no mortality at PLC50 but 75% mortality at PLC85 . The observed stem hydraulic recovery at PLC50 following rewatering was not correlated to NSC dynamics. Collectively, our results highlighted the primary role of hydraulic failure in Pinus massoniana seedling mortality by assessing mortality threshold and links among water status and water supply. Root RWC can be considered as a potential warning signal of P. massoniana mortality.


Assuntos
Pinus , Traqueófitas , Água , Secas , Carboidratos/química , Plântula/fisiologia , Pinus/fisiologia , Árvores/fisiologia
8.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982804

RESUMO

Salinity stress severely hampers plant growth and productivity. How to improve plants' salt tolerance is an urgent issue. However, the molecular basis of plant resistance to salinity still remains unclear. In this study, we used two poplar species with different salt sensitivities to conduct RNA-sequencing and physiological and pharmacological analyses; the aim is to study the transcriptional profiles and ionic transport characteristics in the roots of the two Populus subjected to salt stress under hydroponic culture conditions. Our results show that numerous genes related to energy metabolism were highly expressed in Populus alba relative to Populus russkii, which activates vigorous metabolic processes and energy reserves for initiating a set of defense responses when suffering from salinity stress. Moreover, we found the capacity of Na+ transportation by the P. alba high-affinity K+ transporter1;2 (HKT1;2) was superior to that of P. russkii under salt stress, which enables P. alba to efficiently recycle xylem-loaded Na+ and to maintain shoot K+/Na+ homeostasis. Furthermore, the genes involved in the synthesis of ethylene and abscisic acid were up-regulated in P. alba but downregulated in P. russkii under salt stress. In P. alba, the gibberellin inactivation and auxin signaling genes with steady high transcriptions, several antioxidant enzymes activities (such as peroxidase [POD], ascorbate peroxidase [APX], and glutathione reductase [GR]), and glycine-betaine content were significantly increased under salt stress. These factors altogether confer P. alba a higher resistance to salinity, achieving a more efficient coordination between growth modulation and defense response. Our research provides significant evidence to improve the salt tolerance of crops or woody plants.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Transcriptoma , Árvores/genética , Estresse Fisiológico/genética , Populus/metabolismo , Sódio/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
9.
New Phytol ; 238(3): 952-970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694296

RESUMO

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.


Assuntos
Incêndios , Incêndios Florestais , Plantas , Fenômenos Fisiológicos Vegetais , Água , Carbono , Ecossistema
10.
Sci Total Environ ; 859(Pt 2): 160320, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36410479

RESUMO

Wildfire is a common phenomenon in Mediterranean countries but the 2022 fire season has been extreme in southwest Europe (Portugal, Spain and France). Here we provide a preliminary but comprehensive analysis of 2022's wildfire season in southwest Europe. Burned area has exceeded the 2001-2021 median by a factor of 52 in some regions and large wildfires (>500 ha) started to occur in June-July, earlier than the traditional fire season. These anomalies were associated with record-breaking values of fuel dryness, atmospheric water demand and pyrometeorological conditions. Live fuel moisture content was below the historical minima for almost 50 % of the season in some regions. A few large wildfires were responsible for 82 % of the burned area and, in turn, 47 % of the area burned occurred in protected areas. Shrublands, transitional woodlands and conifer forests (but not eucalypt plantations) were the land cover types most affected by extreme fires. As climate change intensifies, we can expect such fire seasons to become the new normal in large parts of the continent, potentially leading to major negative impacts on rural economies. These results highlight the need for landscape level fuel management also in protected areas, to avoid fire-induced biodiversity losses and landscape scale degradation. Our results have important policy implications and indicate that fire prevention should be explicitly addressed within continental forest legislation and strategies.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Florestas , Estações do Ano , Europa (Continente)
11.
Sci Total Environ ; 859(Pt 2): 160386, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36427739

RESUMO

Wildfires are a natural disturbance in many parts of the world, but fire regimes are changing as a result of anthropogenic pressures. A key uncertainty towards anticipating future changes in burned area lies in understanding the effects of climate teleconnections (CTs). Here we test how different CTs impact burned area in China, a large country comprising different biomes and where similar fire-suppression and post-fire afforestation policies are implemented. We observed diverging temporal trends in burned area across the different pyroregions of China, from increases in the Northeastern grasslands and mixed forests pyroregion to decreases in the Southern tropical forests pyroregion. This North-South antiphase in fire activity was being partly driven by joint effects of the North Atlantic Oscillation and the Antarctic Oscillation, which exerted contrasting effects on fire weather across latitude. El Niño Southern Oscillation and the other examined teleconnections had minor effects over burned area. The increasing burned area in the NE-mixed forests pyroregion indicates that mega-fires may increase under global warming but their occurrence may be modulated by potential strengthening or weakening of NAO and AAO.


Assuntos
Incêndios Florestais , Florestas , Ecossistema , El Niño Oscilação Sul , Regiões Antárticas
12.
Front Plant Sci ; 13: 967187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035730

RESUMO

Subtropical tree species may experience severe drought stress due to variable rainfall under future climates. However, the capacity to restore hydraulic function post-drought might differ among co-occurring species with contrasting leaf habits (e.g., evergreen and deciduous) and have implications for future forest composition. Moreover, the links between hydraulic recovery and physiological and morphological traits related to water-carbon availability are still not well understood. Here, potted seedlings of six tree species (four evergreen and two deciduous) were grown outdoors under a rainout shelter. They grew under favorable water conditions until they were experimentally subjected to a soil water deficit leading to losses of ca. 50% of hydraulic conductivity, and then soils were re-watered to field capacity. Traits related to carbon and water relations were measured. There were differences in drought responses and recovery between species, but not as a function of evergreen or deciduous groups. Sapindus mukorossi exhibited the most rapid drought response, which was associated with a suite of physiological and morphological traits (larger plant size, the lowest hydraulic capacitance (C branch), higher minimum conductance (g min) and lower HV (Huber value)). Upon re-watering, xylem water potential exhibited fast recovery in 1-3 days among species, while photosynthesis at saturating light (A sat) and stomatal conductance (g s) recovery lagged behind water potential recovery depending on species, with g s recovery being more delayed than A sat in most species. Furthermore, none of the six species exhibited significant hydraulic recovery during the 7 days re-watering period, indicating that xylem refilling was apparently limited; in addition, NSC availability had a minimal role in facilitating hydraulic recovery during this short-term period. Collectively, if water supply is limited by insignificant hydraulic recovery post-drought, the observed carbon assimilation recovery of seedlings may not be sustained over the longer term, potentially altering seedling regeneration and shifting forest species composition in subtropical China under climate change.

13.
Physiol Plant ; 174(4): e13751, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36004736

RESUMO

Finding the adequate balance between wood formation and abiotic stress resistance is still an important challenge for industrial woody crops. In this study, PeNAC122, a member of the NAC transcription factor (TF) family highly expressed in xylem, was cloned from Populus euphratica. Tissue expression and ß-glucuronidase (GUS) staining showed that PeNAC122 was exclusively expressed in phloem fiber and secondary xylem of stems. Subcellular and yeast transactivation assays confirmed that PeNAC122 protein existed in the nucleus and did not have transcriptional activation and inhibitory activity. Overexpression of PeNAC122 poplar lines exhibited reduced plant height, thickened xylem, and accumulated lignin content in stems, and also upregulates the expression of secondary cell wall biosynthetic genes. Moreover, overexpression of PeNAC122 lines displayed more tolerance to PEG6000-induced osmotic stress, with stronger photosynthetic performance, higher antioxidant enzyme activity, and less accumulation of reactive oxygen species in leaves, and higher expression levels of stress response genes DREB2A, RD29, and NCED3. These results indicate that PeNAC122 plays a crucial role in wood formation and abiotic stress tolerance, which, in addition to potential use in improving wood quality, provides further insight into the role of NAC family TFs in balancing wood development and abiotic stress resistance.


Assuntos
Populus , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Madeira/genética , Madeira/metabolismo , Xilema/genética
15.
Ann Bot ; 130(4): 509-523, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797146

RESUMO

BACKGROUND AND AIMS: Understanding the genetic basis of adaptation and plasticity in trees constitutes a knowledge gap. We linked dendrochronology and genomics [single nucleotide polymorphisms (SNPs)] for a widespread conifer (Pinus halepensis Mill.) to characterize intraspecific growth differences elicited by climate. METHODS: The analysis comprised 20-year tree-ring series of 130 trees structured in 23 populations evaluated in a common garden. We tested for genotype by environment interactions (G × E) of indexed ring width (RWI) and early- to latewood ratios (ELI) using factorial regression, which describes G × E as differential gene sensitivity to climate. KEY RESULTS: The species' annual growth was positively influenced by winter temperature and spring moisture and negatively influenced by previous autumn precipitation and warm springs. Four and five climate factors explained 10 % (RWI) and 16 % (ELI) of population-specific interannual variability, respectively, with populations from drought-prone areas and with uneven precipitation experiencing larger growth reductions during dry vegetative periods. Furthermore, four and two SNPs explained 14 % (RWI) and 10 % (ELI) of interannual variability among trees, respectively. Two SNPs played a putative role in adaptation to climate: one identified from transcriptome sequencing of P. halepensis and another involved in response regulation to environmental stressors. CONCLUSIONS: We highlight how tree-ring phenotypes, obtained from a common garden experiment, combined with a candidate-gene approach allow the quantification of genetic and environmental effects determining adaptation for a conifer with a large and complex genome.


Assuntos
Pinus , Árvores , Clima , Secas , Interação Gene-Ambiente , Fenótipo , Pinus/fisiologia
16.
Methods Mol Biol ; 2494: 135-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467205

RESUMO

Circadian rhythms affect many aspects of a plant's metabolism including, but not limited to, photosynthesis. Here, we provide a complete protocol for determining changes in the composition of photosynthetic pigments (chlorophyll and carotenoids), and we also consider its implementation within circadian experiments. We describe how to design a circadian experiment with the goal of assessing changes in pigment composition. We then perform two consecutive approaches to track changes in pigment composition: indirect noninvasive estimation of pigment composition (by reflectance or fluorescence) followed by direct pigment analysis (by chromatography or spectrophotometry). Finally, we present several considerations regarding data analyses.


Assuntos
Clorofila , Fotossíntese , Carotenoides/metabolismo , Clorofila/metabolismo , Ritmo Circadiano , Fotossíntese/fisiologia , Espectrofotometria
17.
Bioresour Technol ; 354: 127150, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429593

RESUMO

The slow decomposition rate of the reluctant structure of lignocellulose in agricultural waste is the great limitation of composting processes, which can be averted by pretreatment-strategies. This study focused on the impacts of pretreating rice straw using a consortium of newly isolated fungal species on lignocellulose degradation and humic substances during composting. Fungal pretreatment had a significant impact on lignocellulose degradation (84%) of rice straw by producing higher lignocellulytic enzymes than chemical pretreatments (79%) or the control (61%). The compost with fungal pretreated rice straw (FPT) showed significantly high composting temperature in the late mesophilic stage, which enhanced the degradation of lignocellulose. The fluorescence excitation emission spectroscopy revealed that significantly more humic acid-like compounds were formed in FPT. These findings suggest that fungal pretreatment is a feasible method to accelerate straw degradation and humification.


Assuntos
Compostagem , Oryza , Substâncias Húmicas/análise , Lignina , Esterco , Solo
18.
Commun Biol ; 5(1): 163, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273334

RESUMO

The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.


Assuntos
Fagus , Mudança Climática , Secas , Florestas , Árvores
19.
Plant Cell Environ ; 45(4): 1187-1203, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34985807

RESUMO

Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88  and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.


Assuntos
Secas , Árvores , Carbono , Folhas de Planta/fisiologia , Plântula , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
20.
Sci Total Environ ; 806(Pt 4): 151462, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742803

RESUMO

Wildfires are becoming an increasing threat to many communities worldwide. There has been substantial progress towards understanding the proximal causes of increased fire activity in recent years at regional and national scales. However, subcontinental scale examinations of the commonalities and differences in the drivers of fire activity across different regions are rare in the Mediterranean zone of the European Union (EUMed). Here, we first develop a new classification of EUMed pyroregions, based on grouping different ecoregions with similar seasonal patterns of burned area. We then examine the thresholds associated with fire activity in response to different drivers related to fuel moisture, surface meteorology and atmospheric stability. We document an overarching role for variation in dead fuel moisture content (FMd), or its atmospheric proxy of vapor pressure deficit (VPD), as the major driver of fire activity. A proxy for live fuel moisture content (EVI), wind speed (WS) and the Continuous Haines Index (CH) played secondary, albeit important, roles. There were minor differences in the actual threshold values of FMd (10-12%), EVI (0.29-0.36) and CH (4.9-5.5) associated with the onset of fire activity across pyroregions with peak fire seasons in summer and fall, despite very marked differences in mean annual burned area and fire size range. The average size of fire events increased with the number of drivers exceeding critical thresholds and reaching increasingly extreme values of a driver led to disproportionate increases in the likelihood of a fire becoming a large fire. For instance, the percentage of fires >500 ha increased from 2% to 25% as FMd changed from the wettest to the driest quantile. Our study is among the first to jointly address the roles of fuel moisture, surface meteorology and atmospheric stability on fire activity in EUMed and provides novel insights on the interactions across fire activity triggers.


Assuntos
Tempo (Meteorologia) , Incêndios Florestais , Europa (Continente) , Estações do Ano , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...